Long chain saturated and unsaturated fatty acids exert opposing effects on viability and function of GLP-1-producing cells: Mechanisms of lipotoxicity

نویسندگان

  • Ketan Thombare
  • Stelia Ntika
  • Xuan Wang
  • Camilla Krizhanovskii
چکیده

BACKGROUND AND AIM Fatty acids acutely stimulate GLP-1 secretion from L-cells in vivo. However, a high fat diet has been shown to reduce the density of L-cells in the mouse intestine and a positive correlation has been indicated between L-cell number and GLP-1 secretion. Thus, the mechanism of fatty acid-stimulated GLP-1 secretion, potential effects of long-term exposure to elevated levels of different fatty acid species, and underlying mechanisms are not fully understood. In the present study, we sought to determine how long-term exposure to saturated (16:0) and unsaturated (18:1) fatty acids, by direct effects on GLP-1-producing cells, alter function and viability, and the underlying mechanisms. METHODS GLP-1-secreting GLUTag cells were cultured in the presence/absence of saturated (16:0) and unsaturated (18:1) fatty acids (0.125 mM for 48 h, followed by analyses of viability and apoptosis, as well as involvement of fatty acid oxidation, free fatty acid receptors (FFAR1) and ceramide synthesis. In addition, effects on the expression of proglucagon, prohormone convertase 1/3 (PC1/3), free fatty acid receptors (FFAR1, FFAR3), sodium glucose co-transporter (SGLT) and subsequent secretory response were determined. RESULTS Saturated (16:0) and unsaturated (18:1) fatty acids exerted opposing effects on the induction of apoptosis (1.4-fold increase in DNA fragmentation by palmitate and a 0.5-fold reduction by oleate; p<0.01). Palmitate-induced apoptosis was associated with increased ceramide content and co-incubation with Fumonisin B1 abolished this lipo apoptosis. Oleate, on the other hand, reduced ceramide content, and-unlike palmitate-upregulated FFAR1 and FFAR3, evoking a 2-fold increase in FFAR1-mediated GLP-1 secretion following acute exposure to 0.125 mmol/L palmitate; (p<0.05). CONCLUSION/INTERPRETATION Saturated (16:0), but not unsaturated (18:1), fatty acids induce ceramide-mediated apoptosis of GLP-1-producing cells. Further, unsaturated fatty acids confer lipoprotection, enhancing viability and function of GLP-1-secreting cells. These data provide potential mechanistic insight contributing to reduced L-cell mass following a high fat diet and differential effects of saturated and unsaturated fatty acids on GLP-1 secretion in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cytoprotective actions of long-chain mono-unsaturated fatty acids in pancreatic beta-cells.

Chronic exposure of pancreatic beta-cells to long-chain fatty acids can cause loss of secretory function and enhanced apoptosis by a process of 'lipotoxicity', which may be a contributory factor to the rising incidence of Type 2 diabetes in humans. However, when incubated in vitro, beta-cells respond differentially to long-chain saturated and mono-unsaturated fatty acids, suggesting that these ...

متن کامل

The role of lipid droplet formation in the protection of unsaturated fatty acids against palmitic acid induced lipotoxicity to rat insulin-producing cells.

BACKGROUND Type 2 diabetes is associated with increased plasma concentrations of non-esterified fatty acids (NEFAs), which trigger pancreatic β-cell dysfunction and apoptosis. Only long-chain saturated NEFAs induced lipotoxicity in rat insulin-producing cells in in vitro experiments, whereas unsaturated NEFAs were not toxic. Some unsaturated NEFAs even protected against lipotoxicity. In former ...

متن کامل

Ameliorative Role of Palmitoleic Acid on Palmitate Induced Lipotoxicity in the Rat Cardiomyocytes

Background: Co-supplementation of unsaturated fatty acids (FAs) with saturated FAs may decrease the adverse effects of saturated FA-induced lipotoxicity. The objective of the present study was to evaluate the effect of palmitoleic acid (unsaturated fatty acid) on palmitic acid (saturated fatty acid) induced lipotoxicity criteria in the primary culture of adult rat cardiomyocytes. Methods: Ce...

متن کامل

I-7: Fatty Acids and Male Reproductive Function

Background Background: The fatty acid composition of the sperm membrane changes drastically during spermatogenesis and may be key to its function. Previous data has shown that intake of long chain poly-unsaturated fatty acids can change the fatty acid composition of tissues, including testes and sperm. However, whether these changes in composition translate into changes in semen quality or male...

متن کامل

Protective Effects of Linoleic Acid against the Cytotoxicity of Palmitic Fatty Acid in Rat Cardiomyocytes

Background & Aims: Lipotoxicity is the process through which accumulation of lipid intermadiates leads to cellular dysfunction. The worldwide prevalence of cardiovascular diseases has been increased dramatically due to lipotoxicity. According to the peformed studies, saturated and unsaturated fatty acids differ significantly in their contributions to lipotoxicity. It has been r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017